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Abstract. Latent heat fluxes (L H F) are one of the main contributors to the global energy budget. As the density of LHF
measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications
is enormous. However, to date none of the available satellite products include estimates of systematic, random retrieval, and
sampling uncertainties, all of which are essential for assessing their quality. Here, this challenge is taken on by applying region-
ally independent multi-dimensional bias analyses to L H F-related parameters (wind speed U, near-surface specific humidity
qa, and sea surface saturation specific humidity g,) of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satel-
lite (HOAPS) climatology. In connection with multiple triple collocation analyses, it is demonstrated how both instantaneous
(gridded) uncertainty measures may be assigned to each pixel (grid box). A high-quality in situ data archive including buoys
and selected ships serves as the ground reference. Results show that systematic L H F uncertainties range between 15-50 W
m2 with a global mean of 25 W m2. Local maxima are mainly found over the subtropical ocean basins as well as along the
western boundary currents. Investigations indicate that contributions by g, (U) to the overall L H F uncertainty are in the order
of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics
with a global average of 37 W m™2. In a climatological sense, their magnitudes become negligible, as do respective sampling
uncertainties. Time series analyses show footprints of climate events, such as the strong El Nifio during 1997/98. Regional
and seasonal analyses suggest that largest total (i.e., systematic + instantaneous random) L H F uncertainties are seen over the
Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous
global mean L H F increase up to 2009 needs to be treated with caution. First intercomparisons to other L H F climatologies

(in situ, satellite) reveal overall resemblance with few, yet distinct exceptions.



10

15

20

25

30

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-176 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 31 July 2017 Techniques
(© Author(s) 2017. CC BY 3.0 License.

Discussions

1 Introduction

Exchanges of energy and moisture at the atmosphere—ocean interface represent a critical coupling mechanism within the
climate system. Roughly 20 % of the total radiation absorbed by the Earth’s surface is transferred back to the atmosphere
by means of turbulent heat fluxes (Trenberth et al., 2009). Specifically, latent heat fluxes (L H F') significantly control the
surface energy budget and are, next to radiative fluxes, one of the main contributors to heating and cooling of the oceans.
Approximately 86 % of the global evaporation occurs over the ocean basin (Baumgartner and Reichel, 1975), demonstrating
that this water and oceanic energy transfer is a key component of the overall Earth’s energy budget. The fifth assessment report
of the Intergovernmental Panel on Climate Change (IPCC) emphasizes the role of heat transfer between ocean and atmosphere
in driving the oceanic circulation. It stresses that flux anomalies can impact water mass formation rates and alter oceanic and
atmospheric circulation (IPCC, 2013) due to its influence on sea surface salinity and thus the ocean surface’s density (e.g.
Grodsky et al., 2009). Additionally, L H F modifies the atmospheric stability distribution and triggers convection, which in
turn strongly impacts cloud formation and precipitation. Next to its impact on oceanic processes, this highlights the important
role of L H F in modulating the atmospheric circulation on a variety of scales.

To improve our understanding of global energy and water cycle variability as well as model simulations of climate variations,
it is of great importance to accurately measure L H F' over the global oceans at the highest possible resolution (e.g. Chou et al.,
2004). The need for accurate surface fluxes has, for example, been picked up by the World Climate Research Programme
(WCRP), the WCRP Global Energy and Water Cycle Experiment (GEWEX), and the Climate Variations (CLIVAR) Science
Steering Group (e.g. Curry et al., 2004). This is ideally achieved through accurate observations and correct implementations of
parameterizations in coupled models. Liu and Curry (2006), for example, stress that accurate L H F’ are essential for a correct
forcing of ocean models and for evaluating numerical weather prediction. Additionally, reliable long-term global L H F' data
sets represent a substantial input to assimilation experiments, for instance the oceanic synthesis performed by the German
contribution to Estimating the Circulation and Climate of the Ocean (GECCO, GECCO?2, e.g. Kohl and Stammer, 2008; Kohl,
2015). Such syntheses allow for capturing variability and trends in the turbulent exchange processes, which may exert changes
to the entire climate system.

Several L H F data records exist, which differ in satellite instrumentation, creation process, data density, as well as spatial and
temporal extent. These are either based on in sifu measurements, reanalysis or remotely sensed data. Apart from isolated direct
in situ measurements using e.g. sonic anemometers, all data sources have in common that bulk flux algorithms are applied to
derive L H F. The near-surface wind speed (U), the saturation specific humidity at the sea surface (gs), and the near-surface
specific humidity (g, ) serve as input bulk parameters, on which the parameterized L H F' primarily depend.

However, global L H F time series are often subject to uncertainties of unknown magnitudes, which for example hampers
the conclusion whether there is a significant multi-decadal trend in global L H F or not (e.g. Chapter 3.4.2, IPCC, 2013). On
the one hand, in situ L H F climatologies, which often include data from buoys and ships, are known to contain biases (e.g.
Wang and McPhaden, 2001), to be of variable quality, and to be unevenly sampled. Although research vessel measurements

of e.g. q, are expected to be of good quality (e.g. Roberts et al., 2010), they are regionally limited, which also accounts
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for data from moored buoys (Weller et al., 2008). Issues related to poor data densities over the Southern Ocean, amongst
others, are for example stressed in Yu and Weller (2007), Bourassa et al. (2013), and Prytherch et al. (2014). In consequence,
this impedes a meaningful discussion regarding the quality of L H F in this climatologically important region (Josey, 2011).
Despite the above-addressed issues, the research community has put effort into uncertainty characterizations regarding in situ
L H F-related measurements. Whereas random uncertainties of ship-based L H F'-related parameters are for example discussed
in Gleckler and Weare (1997), Kent and Berry (2005), and Kent and Taylor (2006), systematic uncertainties are assessed in e.g.
Kent et al. (1993) and Kent and Taylor (1996). An example of an in situ L H F climatology incorporating uncertainty estimates
is given by NOCS v2.0 (Berry and Kent, 2009).

On the other hand, global reanalysis products such as ERA-Interim (Dee et al., 2011) and NCEP-NCAR (Saha et al., 2010)
have a high temporal resolution and extent of time series, but are not capable of resolving local-scale processes due to a lack of
spatial detail (Winterfeldt et al., 2010). Specifically over data-sparse regions, more weight is given to the atmospheric model,
which is also prone to uncertainties (e.g. Gulev et al., 2007). At some level, atmospheric reanalysis thus suffer from problems
in their freshwater budgets (e.g. Schlosser and Houser, 2006; Trenberth et al., 2007).

Several remote sensing data records incorporate L H F-related parameters, e.g. the Japanese Ocean Flux data sets with Use
of Remote Sensing Observations (J-OFURO) satellite climatology (Kubota et al., 2002), the Goddard Satellite-based Surface
Turbulent Heat Flux (GSSTF) Version 3 product (Shie et al., 2012), the updated version of the French Research Institute
for Exploitation of the Sea (IFREMER) turbulent flux estimates (Bentamy et al., 2013), the SeaFlux Version 1 and 2 data
sets (Clayson et al., 2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology
(Andersson et al., 2010; Fennig et al., 2012). As all incorporate data with high spatial resolution and cover up to several
decades, they have a vast potential for climate research applications.

The HOAPS data set is a completely satellite-based, single-source climatology of precipitation, evaporation, related turbu-
lent heat fluxes, and atmospheric state variables over the global ice-free oceans. The usefulness of the HOAPS climatology
for climatological applications has been tested among numerous intercomparison studies and promising results have been pub-
lished within Bentamy et al. (2003), Bourras (2006), Klepp et al. (2008), Winterfeldt et al. (2010), Andersson et al. (2011),
and Stendardo et al. (2016). In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) for example
conclude that HOAPS-3 is well suited for global applications and serves as an important and independent data set that should
be included in future ocean synthesis.

As in situ and reanalysis data records, remotely sensed L H F' climatologies are also prone to uncertainties. Next to calibra-
tion uncertainties and aliasing problems (Bentamy et al., 2003), uncertainty sources either originate from uncertainties in the
parameterization (Zeng et al., 1998; Brunke et al., 2002, 2003) or may be linked to the inaccuracy of the input bulk variables
(Bourassa et al., 2013). In the framework of an oceanic L H F' assessment, Brunke et al. (2011) for example conclude that
the uncertainty of HOAPS-3 LH F is largely composed of bulk variable-caused issues due to inaccuracies of their individual
retrievals. Liu and Curry (2006) reason similarly, while assessing discrepancies of remotely sensed and reanalysis L H F dur-
ing the 1990s. Romanova et al. (2010) recall that specifically early satellite-based products contain large uncertainties, as also

shown by investigations regarding the hydrological cycle by Mehta et al. (2005). The knowledge of both accuracy and preci-
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sion of the remotely sensed bulk parameters is critical for assessing the quality of satellite-based L H F', as the uncertainties
propagate through the applied L H F bulk formula. Finally, irregular sampling from space introduces sampling uncertainties,
which may locally become substantial (e.g. Gulev et al., 2007).

To better quantify the quality of satellite-based data sets, Prytherch et al. (2014) recently emphasized the value grid box
based, comprehensive uncertainty estimates (in their case of g,) would have for climate research purposes. To date, none of
the above-listed, satellite-based data sets are accompanied by L H F-related uncertainty estimates, which hampers a quality
assessment of the air—sea fluxes and related parameters. Such uncertainty assessments would go beyond conventional L H F
intercomparison studies (as e.g. presented in Chou et al., 2004; Yu et al., 2011), as they would allow for quantifying the data’s
accuracy and precision. Uncertainty evaluations in ocean surface turbulent fluxes has for example been carried out by Brunke
etal. (2011), who decomposed overall biases with respect to direct in situ records into a bulk variable and a residual component,
the latter which also includes the measurement uncertainty. A current overview study by Loew et al. (2017) highlights the
necessity of earth observation data validation and pools different approaches across communities. Finally, assimilation schemes
like GECCO require such uncertainty information prior to assimilating respective fields in ocean models.

In the framework of the German research initiatives 'FOR1740’ and ’FOR21740° (’Atlantic Freshwater Cycle’, http://
for1740.zmaw.de/), the lack of uncertainty information is overcome by taking on the challenge of quantifying systematic,
random, and sampling uncertainties inherent to HOAPS-3.3 L H F-related parameters. Rigorous error propagation to the in-
stantaneous L H F-related data is performed, which accounts for how uncertainties in the bulk parameters propagate into
uncertainties of L H F themselves, while accounting for covariances of the contributing parameters.

Section 2 presents the applied data sources in more detail. As to systematic uncertainty patterns, the approach of double
collocation and multi-dimensional bias analyses is introduced in Sect. 3. This is complemented by the strategy of decomposing
random uncertainties via multiple triple collocation to separate the eligible random satellite retrieval uncertainty from colloca-
tion and in situ measurement contributions. All uncertainty components are presented in Sect. 4, where seasonal and regional
differentiations allow for assessing the uncertainty spectrum. This is supplemented by trend analysis in light of the derived

uncertainty estimates. Section 5 provides a summary and a brief outlook regarding ongoing work.

2 Data
2.1 HOAPS-3.3 Pixel-Level Data Records

Apart from the sea surface temperature (SST), all HOAPS parameters are derived from intercalibrated Special Sensor Mi-
crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave radiometers, which are
installed aboard the polar orbiting satellites of the United States Air Force Defense Meteorological Satellite Program (DMSP).
HOAPS provides consistently derived global fields of freshwater flux related parameters. Regarding sensor specifications and

orbital paths, the reader is referred to e.g. Andersson et al. (2010).
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Here, the focus lies on the HOAPS-3.3 pixel-level, which has been produced as an extension to the HOAPS-3.2 data set (An-
dersson et al., 2010; Fennig et al., 2012) in the framework of the ongoing DFG research activity. It covers the time period from
1987 to 2015, during which a total number of nine satellite instruments were in operational mode. Compared to HOAPS-3.2,
HOAPS-3.3 has been temporally extended up to 2015 and is based on a pre-release of the CM SAF SSM/I and SSMIS FCDR.
This reprocessing included a homogenization of the radiance time series by means of an improved inter-sensor calibration
with respect to the DMSP F11 instrument. Earth incidence angle normalization corrections were applied, following a method
described by Fuhrhop and Simmer (1996). Its extensive documentation is available online (Fennig et al., 2013). Since the
HOAPS-3.1 release, HOAPS is hosted by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF),
whereupon its further development is shared with the University of Hamburg and the Max Planck Institute for Meteorology
(Hamburg). In this study, the pixel-level HOAPS-3.3 data in sensor resolution is used, which implies that no aggregation for
gridding purposes has been applied.

HOAPS-3.3 g, relies on a direct, four-channel retrieval algorithm by Bentamy et al. (2003), which is based on a modi-
fied version of the two-step multi-channel regression model by Schulz et al. (1993) and its refinement by Schliissel (1996).
1000 globally collocated pairs of SSM/I TBs and ship data between 1996-1997 were used to estimate the new values for the
coefficients in the Schulz model.

To account for the non-linearity of the problem, the HOAPS-3.3 U algorithm uses a neural network approach with three
layers after Krasnopolsky et al. (1995) to derive the wind speed at 10 m above sea level (a.s.l.). The network was trained
with a composite data set of buoy measurements, which was compiled using matchups of SSM/I F11 brightness temperatures
(TBs) and near-surface wind speed measurements from the National Oceanographic and Atmospheric Administration (NOAA)
National Data Buoy Center (NDBC) and the Tropical Atmosphere Ocean (TAO) array between 1997-98. Radiative transfer
simulations based on radiosonde profiles served as input for the training data set (Andersson et al., 2010).

HOAPS-3.3 SST is based on the AVHRR Pathfinder Version 5.2 and is obtained from the US National Oceanographic Data
Center and the Group for High Resolution Sea Surface Temperature (http://pathfinder.nodc.noaa.gov). The data are an updated
version of the Pathfinder Version 5.0 and 5.1 collection described in Casey et al. (2010). A static bias correction of +0.17 K has
been applied to HOAPS-3.3 SST data in order to revert the Pathfinder Version 5.2 skin correction and thus achieve consistency
with Version 5.0 used in HOAPS-3.2.

HOAPS-3.3 sea surface saturation specific humidity g is derived by applying the Magnus formula (Murray, 1967) to SST,
while accounting for a constant salinity correction factor of 0.98. Zeng et al. (1998), e.g., showed that omitting the factor under
strong wind conditions has a significant impact on resulting LH F'.

HOAPS-3.3 LHF is based on the Coupled Ocean—Atmosphere Response Experiment (COARE) 2.6a bulk flux algorithm.
With minor modifications of physics and parameterizations, the algorithm is published as COARE 3.0a by Fairall et al. (2003).
U, gs, and q, are required as input. The latter depends on the surface air temperature, which is estimated by assuming a
constant relative humidity of 80 % (Liu et al., 1994) and air-sea temperature difference of 1 K (Wells and King-Hele, 1990).
COARE-3.0 is widely accepted within the scientific community; its benefits are for example presented in the framework of an

intercomparison study by Brunke et al. (2003).
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2.2 DWD-ICOADS Data Archive

Hourly in situ measurements of U, g5, and g, (bulk parameters, as of now) have been provided by the Marine Climate Data
Center of the German Meteorological Service (DWD), supervised by the Marine Meteorological Office (Seewetteramt, SWA).
While data prior to 1995 is excluded due to a comparatively poor in situ data coverage, the data set used here includes measure-
ments up to 2008. It comprises global high-quality shipborne measurements as well as data provided by drifting and moored
buoys. In case of data gaps within the SWA archive, the in sifu data basis was extended at SWA by available International
Comprehensive Ocean—Atmosphere Data Set (ICOADS) measurements (Version 2.5, Woodruff et al., 2011). These records
contain hourly global measurements obtained from ships, moored and drifting buoys as well as near-surface measurements of
oceanographic profiles. Several quality checks were performed at SWA prior to using the merged DWD-ICOADS data, which
resulted in quality index assignments to each observation. Details regarding the flagging procedures carried out at SWA are
given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filtering and correcting procedures to both ship and buoy data were carried
out. Regarding ship records, annual lists of Voluntary Observing Ships (VOS) metadata (Kent et al., 2007) were employed.
Most of the supplementary buoy metadata was extracted from the Data Buoy Cooperation Panel, which particularly includes a
fleet of moored buoy arrays operated by NDBC. Metadata of the Global Tropical Moored Buoy Array, such as TAO-TRITON
(Pacific-), PIRATA (Atlantic-), and RAMA (Indian Ocean) were obtained from the Pacific Marine Environment Laboratory
(PMEL).

ICOADS VOS estimates of g, are based on wet bulb temperature measurements, typically using mercury thermometers,
which are often exposed in either (ventilated) screens or sling psychrometers (Kent et al., 2007). g, is eventually derived by
applying the psychrometric formula. By contrast, g, estimates of buoys originate from measurements of air temperature and
relative humidity. For this study, g, of both VOS and buoys were not corrected to the HOAPS-3.3 reference of 10 m a.s.l,,
assuming neutral stratification. A discussion related to this approach is published in Kinzel et al. (2016). It is in line with
Prytherch et al. (2014), who conclude that a conversion to 10 a.s.l. (neutral stability) substantially adds to the noise in the
resulting in situ q,. The aspect of correcting g, with respect to height and stratification is also elucidated in Bentamy et al.
(2003) and correction effects are presented in Kent et al. (2014).

DWD-ICOADS VOS U are either measured using anemometers (likewise for buoys) or are estimated from the sea state,
depending on the preference of the country recruiting the VOS (Kent et al., 2007). By means of the measured wind speed and
direction, the true wind speeds are derived considering the ship’s speed and direction. If a specific anemometer height was not
given, it was estimated from the annual global mean height difference with respect to the thermometer platform. For each year,
this single height difference value is based on all contributing ship records with complete metadata information. Prior to 2002,
no thermometer heights were available; consequently, the height difference was set to 6 m (average between 2002-2008). In
case both sensor heights were unknown, the linear fits shown in Table 4 of Kent et al. (2007) were used to derive anemometer
heights based on available ship length metadata. It was assumed that these ship type dependent linear fits (Kent et al., 2007,

their Fig. 11) introduce negligible uncertainties to the sensor height derivation. Given the anemometer heights of both VOS and
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buoys, in situ wind speeds were corrected to the HOAPS-3.3 standard height of 10 m a.s.l. to remove inhomogeneities, using
the iterative equivalent neutral stability approach of Fairall et al. (2003). With the exception of e.g. (stable stratified) upwelling
regimes or local instabilities, the equivalent neutral stability assumption is valid over vast regions of the open oceans. The
correction using a neutral wind equivalent profile has been suggested by e.g. Shearman and Zelenko (1989). It is argued that in
case of VOS, the omission of a correction would lead to a positive wind speed bias, as the average wind sensor height is given
by 18 m (Kent et al., 2014). By contrast, buoy U would be low-biased.

VOS SST measurement techniques differ in terms of platform, measurement depth, and extent of automation. Strictly speak-
ing, in situ SST are sub-surface temperatures and thus differ from the HOAPS-3.3 Pathfinder SST, which are treated as a skin
SST for the surface flux calculations. This necessitates an in situ cool-skin correction as a function of wind speed, following
Donlon et al. (2002). Their Equation (2) was applied, omitting all records subject to wind speeds below 2 m s! (corrected to
10 m a.s.1.), as the exponential fit introduces additional uncertainty for very calm conditions. On average, the SST correction
reduced the DWD-ICOADS SST by approximately 0.17 K. Moreover, the warm layer part of the COARE 3.0 algorithm is not
implemented in HOAPS-3.3 due to the lack of a continuous diurnal cycle information on the surface radiation budget from the
SSM/T and SSMIS measurements. To be directly comparable to the in situ counterpart, all in situ measurements taken during
local daytime were excluded. As only night-time in situ measurements during non-calm conditions were considered, the sea
water temperature gradient within the uppermost meters of the water column is thought to be negligible. A SST correction
with respect to the sensor depths was therefore omitted for both VOS and buoys, independent of the measurement platform.

All VOS data processing described above were carried out for research vessels (so-called ’special ships’) and merchant
vessels only due to vast data amounts and in order to minimize in sifu uncertainties. In case of multiple triple collocation
analysis (Sect. 3.4), buoy records were excluded to ensure having a consistent, globally distributed data set as the ground
reference for the random decomposition procedure. It is argued that the vast amount of remaining triplets authorizes this
restriction.

Despite strict filtering and correcting procedures, in situ measurement uncertainties related to sensor types, measurement
heights and positions, and solar radiation contamination may remain (e.g. Bourassa et al., 2013). Assessments regarding the
quality of the reference data are beyond the scope of this article. The in situ data basis is therefore considered as the bias-free,

ground reference.

3 Methodology

This Section describes the technical background for deriving systematic, random, and sampling uncertainties inherent to
HOAPS-3.3. The uncertainties will be examined from an either instantaneous or climatological point of view, depending
on the scale of interest and thus the application. The random uncertainty decomposition presented in Kinzel et al. (2016) is

therefore complemented, leading to a complete HOAPS-3.3 uncertainty characterization of L H F-related parameters.
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3.1 Double Collocation Analysis

In preparation for uncertainty calculations, a double collocation analysis is performed for the time period of 2001-2008,
resulting in paired matchups of L H F-related HOAPS-3.3 and in sifu data. Although HOAPS-3.3 lasts until 2015, collocations
between 2009-2015 were not performed, as the DWD-ICOADS data archive only lasts until 2008. The collocated pairs are
based on the so-called nearest neighbor approach; that is, HOAPS-3.3 pixels are assigned to respective in situ observations
closest in time and space. Parameter-independent collocation criteria of Ax = 50 km and Af = 60 min are chosen. These are
more restrictive than those derived in e.g. Kinzel (2013). Due to the vast amount of available matchups this is justifiable and
ensures that e.g. strong spatial and/or temporal gradients associated with fronts are discarded from further analysis.

Figure 1a-d exemplarily shows scatter density plots of the g, bias (2001-2008) as a function of the atmospheric state param-
eters g, ("hair"), U ("wind"), SST ("asst"), and water vapour path ("wvpa"), resulting from the double collocation analyses.
Overall, 13.8 million matchups contribute to each subplot. Figure 1a indicates that HOAPS-3.3 overestimates near-surface
specific humidities for g, between 7-12 g kg™' and in the inner tropics (g, &~ 20 g kg™!). In return, biases are negative over
Arctic (< 5 g kg'!) and subtropical (12-17 g kg'!) humidity regimes. The latter regions is also subject to largest random uncer-
tainties, which exceed 2 g kg'!. See Kinzel et al. (2016) for more details on the analysis of HOAPS-3.3 g,. The humidity bias
and standard deviation dependency on SST (Fig. 1c) shows similar features regarding regimes of over- and underestimation.
Humidity biases as a function of wind speed are illustrated in Fig. 1b. The distribution is somewhat linear, where low (high)
wind regimes are over- (under-) represented in HOAPS-3.3. In contrast to the remaining atmospheric state parameters, the
random uncertainty decreases fairly linearly with increasing wind speeds. A dependency of dg, on the total integrated water
vapour (Fig. 1d) shows only few distinct features. Most matchups coincide with values below 20 kg m™2. With the exception of
smallest values, these result in positive biases with respect to HOAPS-3.3.

A comparison of e.g. Fig. 1a and b indicates that the simple one-dimensional bias analyses may be misleading when it
comes to HOAPS-3.3 g,-related uncertainty characterizations. Average g, off the Arabian Peninsula, for example, are in the
order of 14-15 g kg™'. According to Fig. 1a, this is associated with a HOAPS-3.3 ¢, underestimation. At the same time,
climatological mean wind speeds are as low as 3-5 m s’!, which goes along with a HOAPS-3.3 ¢, overestimation (Fig.
1b). This is no contradiction, but rather indicates that the HOAPS-3.3 ¢, retrieval seems to encounter challenges for specific
humidity and wind regimes. Furthermore, a constraint to one-dimensional analyses implies for example that parts of the random
uncertainties illustrated in Fig. 1a (bars) receive a systematic component in Fig. 1b (squares). This conclusion motivates to
proceed with multi-dimensional bias analyses, where all possible atmospheric states, i.e. combinations of the four chosen
atmospheric state parameters, are accounted for simultaneously. This approach finally allows for separating systematic from
random uncertainties. Results illustrated in Fig. 1 can therefore be considered as a preliminary stage of the four-dimensional
bias analyses introduced in Sect. 3.2, where each of the four atmospheric state variables (i.e., Fig. 1, x-axes) represent one

dimension. Analogously to Fig. 1, one-dimensional analyses are performed for both dU and dg, (not shown).



10

15

20

25

30

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-176 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 31 July 2017 Techniques
(© Author(s) 2017. CC BY 3.0 License.

Discussions

3.2 Multi-Dimensional Bias Analyses

The bulk formula for L H F is given by

LHF = p,LyCeU(gs —qa), o

where p, is the density of moist air and Ly the latent heat of vaporization. p, is derived as a function of HOAPS-3.3 ¢, and
near-surface air temperature. Likewise, Ly is computed simultaneously as a function of HOAPS-3.3 SST'.

Assuming uncertainties in p, and Ly to be negligible and according to standard error propagation, the overall L H F un-
certainty is a function of the systematic and random uncertainties introduced by the remaining parameters. In case of U, gs,
and g, these are assumed to depend on the concurrent atmospheric state. The combination of ¢,, U, SST, and water vapour
path is thought to represent the concurrent atmospheric state best. Therefore, the one-dimensional consideration presented in
Sect. 3.1 is expanded by creating four-dimensional look up tables (LUTs) including 20* entries, respectively. The dimension
is reflected in the exponent, whereas its base represents the amount of bins per dimension. The values of all four dimensional
vectors are essential for assigning instantaneous, absolute differences (HOAPS-3.3 minus in situ) to the correct LUT bin and
are predetermined by the respective x-values of the black squares shown in Fig. 1a-d.

The uncertainty dependency on specific ambient conditions overcomes the issues introduced by data-sparse regions, such as
the Southern Ocean and the tropical oceans (e.g. Kent and Berry, 2005). Here, it is knowingly turned away from the dependency
on matchup density, which implies that the LUTs are valid on a global scale. Due to the immense data availability, their input
biases are confined to matchups from 2001-2008 (dg,, dU) and 1998-2001/2006-2008 (dg;s). A thorough elucidation of the
multi-dimensional bias analysis is presented in Kinzel et al. (2016), exemplarily for HOAPS-3.2 g, (Sect. 2c and Fig. 5, left
therein). Here, it is applied to all three bulk parameters, which results in both systematic and fotal random uncertainty LUTs.

As to the Dalton Number CE, the estimates of Fairall et al. (2003) are applied by assigning 5 % (10 %) of systematic
uncertainty of Cg for wind speeds smaller (larger) than 10 m s!. For even stronger wind speeds, the estimate of Gleckler and
Weare (1997) of 12 % is taken on. Independently of U, random uncertainties of 20 % are assigned, as proposed by Gleckler
and Weare (1997).

Recall that the aim is to characterize uncertainty and not bias patterns. This implies that absolute systematic uncertainty
values are generally presented, i.e., magnitudes are invariably positive. Results presented in Sect. 4.4-4.6 can therefore be

considered as illustrating the upper boundaries of systematic (that is, climatological) uncertainties.
3.3 HOAPS-3.3 Uncertainty of LHF

The uncertainties in L H F' are caused by uncertainties in all bulk input parameters contributing to Eq. (1). Assuming the
underlying parameterizations to be correct, L H F' uncertainties can thus be derived by carrying out standard error propagation.

These uncertainty estimates are assigned at each point in time and space.
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Total instantaneous L H F uncertainties, oy g F, are derived as follows:

ALHF\? ., (ILHF 2 s OLHF dLHF
OLHF = P o2+ 5 07 +2ryy Py 5 0x0y, 2

where x and y are place holders of U, gy, g4, and Cg. ryy is the correlation coefficient between x and y. For each combination
of x and y, the average of daily global mean correlation coefficients between 1995 and 2008 is applied.

o, and o are fotal uncertainties in x and y. These can be decomposed into systematic and random components:

ILHF\* , _ (0LHF\? , ILHF\? , _12\2
ax GX = 8x ax,sys—‘r ax Ux,ran <N ) : (3)

N is the number of HOAPS-3.3 satellite observations (N=1 for instantaneous L H F uncertainties). Note that in case of

gridded uncertainty products, the random component becomes negligibly small, given long temporal and large spatial averages.
Sampling uncertainties do not exist on an instantaneous basis and are therefore not considered in Eqgs. (2)-(3).
Recall that oy 4, in Eq. (3) represents the overall random uncertainty of x. To isolate its random satellite retrieval component

(E4%), arandom uncertainty decomposition is carried out, which is briefly reviewed in the following.

3.4 HOAPS-3.3 Random Uncertainty Decomposition

This section briefly summarizes the concept of random uncertainty decomposition. For more mathematical and technical de-
tails, the reader is referred to Kinzel et al. (2016).
Next to E74"  random uncertainty estimates resulting from collocations (e.g. black error bars in Fig. 1) include uncertainties

retrs
associated with the collocation procedure (Ec) and in situ measurement noise (E;,s) (e.g. Bourras, 2006). To isolate E|S/),
multiple triple collocation (MTC) analysis is applied to matchups of U, g5, and g, for the time period 1995-2008. MTC
analysis includes a twofold triple collocation (TC introduced by Stoffelen, 1998), whereupon double collocated data described
in Sect. 3.1 serves as input. Triplets incorporating two independent in situ measurements and one HOAPS-3.3 pixel represent
the first arrangement, whereas a single in situ record and two HOAPS-3.3 pixels of independent satellite instruments form
the second triplet structure (see Fig. 1 in Kinzel et al. (2016)). The collocation criteria applied in Sect. 3.1 are adopted. Data
poleward of 60° N/S is excluded to avoid biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in situ measurements, the variances of differences between two indepen-
dent data sources X and Y, thatis Vxy, are calculated following O’Carroll et al. (2008). Given three data sources and two types
of TCs, this results in six combinations of Vxy. Next, error models for both ship and satellite records are defined. In case of ship
records, these include Ej;, s, whereas for satellite records, they incorporate satellite sensor noise (Ey, synthetically derived) and
retrieval model uncertainty (Ej;). Applying these error models to the derived Vyxy results in six equations incorporating Ej;,

Ey, Ey, and Ec. These equations are successively solved for all random uncertainty sources as a function of the respective
bulk parameter. E'%" = \/(E)? + (Ey)? is the pursued random satellite retrieval uncertainty.

retr
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Thus, MTC is a powerful tool to decompose fotal random uncertainties (i.e., Esym = E|S5). + Eins + Ec) inherent to LH F -

ran

related bulk parameters in order to isolate the random retrieval contribution EJ/..

Depending on the magnitude of the respective
bulk parameter, the fractional contribution of E|4/% to E,y, is finally derived. That is, each entry of the total random uncertainty

LUTs introduced in Sect. 3.2 is *adjusted’. Table 1 presents a statistical summary of the instantaneous, decomposed random

uncertainties inherent to U, g5, and ¢,.
3.5 Sampling Uncertainty

Next to systematic and random uncertainties, inhomogeneous sampling may occur, specifically when temporal and/or spatial
resolution in observations are coarse. As remotely sensed data is measured at selected times only, spatial and temporal sampling
uncertainties therefore become an issue (Gulev et al., 2010), as the diurnal cycle may not be captured correctly.

In a first step, daily mean sampling uncertainties of HOAPS-3.3 L H F-related parameters are derived, using high-resolution
buoy measurements. Overall, data of eight tropical (PMEL, hourly resolution) and 15 extratropical (NDBC, 10-minute reso-
lution) moored buoys account for a possible climate regime dependency. All chosen buoy records comprise several years of
data and hardly show temporal data gaps. Here, the approach by Tomita and Kubota (2011) is followed to derive the sampling
uncertainties by simulating satellite data overpasses based on the buoy records. In case of U and SST, records are corrected
for sensor heights and cool skin effects, respectively, as explained in Sect. 2.2. In situ LH F are computed by means of the
COARE-2.6a algorithm (Fairall et al., 2003). Daily means of ’true’ buoy data are derived by averaging all daily buoy records,
where only high-quality data (indicated by quality flags 1-2) is considered. The weighted average of the two closest (in time)
’true’ buoy observations to local satellite overpasses corresponds to the so-called ’simulated’ satellite data record (Tomita
and Kubota, 2011, their Fig. 2). All daily sampling uncertainties are derived as a function of the number of simultaneously
operating SSM/I instruments. These daily values form the basis for the monthly averages of selected parameters, which are
outlined in Table 2 (Sect. 4.3). The estimates are global means; an earlier, regime-dependent investigation resulted in negligible

differences between the resulting sampling uncertainties.

4 Results and Discussion
4.1 Magnitudes of Decomposed Random Uncertainties

Table 1 presents a statistical summary of the instantaneous random uncertainty decomposition for the bulk parameters U, g,
and ¢, following the approaches described in Sect. 3.2 and 3.4. Note that Ey is not included, as its synthetically derived value
(for procedure, see Kinzel et al., 2016) remains constant throughout the respective parameter range. Asterisked values indicate
global mean weighted averages and pooled variances of Kent and Berry (2005), resulting from a semivariogram approach.
These are based on their Fig. 1, taking the illustrated grid averaged random uncertainties, the standard deviation as well as
the number of observations into account. In the following, individual contributions to the overall random uncertainties are

discussed, but not shown in terms of supplementary figures.
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EJSl (qq) ranges between 0.3 and 1.8 g kg™!, where minima (maxima) are found in Arctic (subtropical) g, regimes. Whereas

largest relative uncertainties are associated with polar g, values, lowest relative contributions below 10 % are confined to the

ran
retr

inner tropics. On average, both E.(g,) and E;,s(q,) are approximately half the size of E’ ¢ (q,). The average of Ej;s(q,) is

0.4 g kg! below the mean estimate of Kent and Berry (2005). It is hypothesized that the lower estimate of E;,s(q,) is a direct
consequence of the rigorous in sifu filtering procedure prior to MTC analysis. The difference may furthermore be triggered

by the fact that Kent and Berry (2005) include data records dating back to the 1970s and 1980s, which may imply that ship

records are included which do not fulfill the here applied quality control standards. In contrast to E5;%.(q4), Eins(qa) increases

rather linearly with g,, which implies that smallest (largest) random in sifu measurement uncertainties are found for lowest

(highest) g,. In contrast, E.(q,) shows a similar distribution as E}S/.(q,), yet with considerably smaller amplitude. These

random collocation uncertainties range between 0.4 and 0.7 g kg™!, corresponding to 3—18 %. A graphical illustration of the g,
random uncertainty decomposition is shown in Kinzel et al. (2016) (their Fig. 2).
In case of U, all random uncertainties tend to be larger compared to ¢, in a relative sense. In contrast to g, all three relative

uncertainties exhibit a clear increase over large ranges of U, where minima and maxima in E]¢.(U) (E;,s(U), E.(U)) range

between 1.0-2.6 m s (1.5-2.3 m 57}, 0.8-2.0 m s™!). Whereas E’%"(U) and E;ns(U) are fairly constant for moderate wind

retr

speeds before continuously increasing, E.(U) seems to already saturate for mean wind speeds in the order of 10 m s™! (not
shown). Similar to Ej,5(q,), the E;,s(U) estimate of Kent and Berry (2005) is roughly 40 % larger. Again, this difference
is suspected to arise from the differences in the data set compositions. Kent and Berry (2005) furthermore elucidate that no
corrections for height or adjustments to the Beaufort scale have been applied to their data, which would have caused a reduction
in random uncertainty of 13 &+ 1 %, according to the authors. Yet, E;,;(U) almost exclusively represents the largest contribution
to the random uncertainty budget of U. For all random uncertainty sources, strong wind regimes are linked to smallest relative
uncertainties in the order of 12—15 %. In low-wind regimes, however, relative uncertainties exceed 50 % to even 100 %.

Both absolute and relative contributions of gs-related random uncertainties remain well below those of g,. Global mean

values of all three random uncertainty sources are in the order of 0.5-0.6 g kg™'. Regarding E’%" (gy), this is comparable to

the value published in e.g. McClain (1989), who estimated the global RMSE of AVHRR-derived SST to be in the order of
0.6-0.7 K (£ 0.4-0.5 g kg™"). Similar to E*(U), E'%"(qs) (Eins(qs)) shows a positive proportionality with largest values

retr retr

of 0.9 g kg'! (1.5 g kg'!). As for Ej,s(U), Eins(qs) exceeds EZ%"(q,), specifically for g, larger than 8 g kg'!. In contrast

retr

to q,, relative uncertainties are smallest in extratropical regimes with contributions of merely few percent. Largest relative

uncertainties remain well below those of g, and are in the order of 8-14 %.

4.2 Patterns of Random Retrieval Uncertainties

ran
retr

The results shown in Sect. 4.1 are expanded by showing the global patterns of E%/". in two-dimensional space.

Depending on the time period and thus on the number of SSM/I and SSMIS instruments in operation, the monthly global

mean sum of instantaneous observations per 0.5°x0.5° grid cell ranges from approximately 90 (1988) to 650 (2006). In con-

ran

sequence, monthly means of E]Z/.

are considerably below the systematic counterpart (see scaling effect of N in Eq. (3)).
ran
retr

Specifically from 1991 onwards, monthly globally averaged E'%/" of L H F-related parameters only reach 0.5-3 %. This re-

12
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duction becomes even more striking when investigating multi-annual or even climatological means; L H F-related E}5/. vir-
tually vanish on these scales. An increase (decrease) in these climatological random uncertainty values often directly results
from a decrease (increase) in the number of pixel-level observations and thus not from a physical change due to shifts in the
climate. This implies that results of trend analyses in random uncertainties, for example, may be misinterpreted. Therefore, the
attention is drawn to the pixel-level (instantaneous) random uncertainty fields, which are subsequently related to the systematic
counterpart in terms of distribution and magnitude. This instantaneous point of view causes their orders of magnitude to be
similar to the results of E;¢/ presented in Table 1. Note that the global averages shown in Fig. 2 in form of text strings are
cosine-weighted, whereas the means illustrated in Table 1 do not take a regional dependency into account.

Figure 2 shows the instantaneous EJ/;. patterns of HOAPS-3.3 L H F-related parameters between 1988 and 2012. To a great
extent, Fig. 2a can be interpreted as a two-dimensional representation of the error bar magnitudes shown in Fig. 1a. Recall that
the random uncertainties illustrated in Fig. 1a have not yet been corrected for the impact of E;;,s(g,) and E.(q,) (Sect. 3.4),
which is why their magnitudes exceed those shown in Fig. 2a. Maxima above 1.5 g kg™! are located over all subtropical ocean

basins, where g, is in the order of 13-17 g kg'!. A reduction within the inner tropics is clearly resolved, specifically over the

ran
retr

ran

warm pool region. E%"(q,) sharply decreases poleward to values of 0.6-0.9 g kg"'. The global mean instantaneous ESN(qa)
takes on a value of 1.2 g kg!.

The distribution of instantaneous E]J"(U) (Fig. 2b) shows a rather reversed pattern of g, and closely resembles the clima-
tological distribution of U itself. The global mean is given by 1.0 m s”!. Global maxima cover large areas of the extratropical
oceans, specifically over the Southern Ocean. Here, averages partly exceed 1.5 m s™'. However, this results in less than 15
% retrieval uncertainty in a relative sense (not shown). In contrast, instantaneous E/%)(U) remain low (that is, below 0.8 m
s'1) over the (sub-) tropical ocean basins. This also applies to the warm pool area, which indicates a maximum in relative
contribution close to 20 % due to climatological low wind speeds (not shown).

The pattern of instantaneous E|¢/.(gs) (Fig. 2c) resembles that of g,. However, the global mean magnitude of 0.3 g kg'1
represents merely 25 % of the atmospheric counterpart. Absolute maxima in the order of 0.4 g kg™! are located over the
Indo-Pacific warm pool region, which stands in contrast to the local minimum in that region for g,. The comparatively small
ET% (g5) also find expression in the low global mean relative uncertainty of 2 % (not shown). Values exceeding 4 % are

retr
confined to the extratropical ocean basins on both hemispheres.

Instantaneous EJ4/ (L H F') (Fig. 2d) show a strong proportionality to the climatological mean L H F pattern. In that respect,
maxima are generally located over the subtropical central parts of all ocean basins (specifically the Indian Ocean) as well as
along the western boundary currents. Respective values partly exceed 50 W m™. Apart from extratropical minima, low values
in the tropics are confined to the eastern margins of the basins and the warm pool region.

Figure 2e shows the instantaneous random uncertainty of L H F relative to its natural variability. This variability has been de-
fined as the pixelwise difference between the Sth and 95th percentile of instantaneous L H F observations between 2000-2008,
based on the F13 platform only. Globally averaged, the relative random uncertainty equals to 17 %. Due to the large range of

LHF along the western boundary currents (WBCs) and over the Central Indian Ocean, the absolute maxima seen in Fig. 2d

13
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are not resolved in Fig. 2e. Largest relative uncertainties exceeding 25 % are confined to the Southern Central Tropical Pacific

and along the equatorial Atlantic.
4.3 Monthly Mean Sampling Uncertainties

Table 2 summarizes the monthly mean sampling uncertainties of several L H F-related HOAPS-3.3 parameters as a function
of concurrently operating SSM/I instruments. SST -related parameters show largest sampling uncertainties when three SSM/I
instruments are simultaneously operating. This is not contradictory, as HOAPS-3.3 SST are AVHRR-based and thus not
linked to the coverage of SSM/I instruments. From a climatological perspective, all magnitudes are negligibly small compared

to respective systematic uncertainties. Regarding the main bulk parameters, orders of magnitude closely resemble those of

ran

monthly mean scaled E/J/.

It is concluded that their relative contribution to the monthly mean uncertainty budget is in the
order of merely 1-2 %. However, one should keep in mind that sampling uncertainties become essential on considerably shorter

time scales, i.e., in the framework of (sub-) daily analyses.
4.4 Climate Means of HOAPS-3.3 Total Uncertainties

Figure 3a-e shows the distribution of the climatological fofal uncertainties (E.j;,) between 1988 and 2012 for LH F and its
related bulk parameters. As the contribution of ES% and sampling uncertainties converges towards 0% due to the vast number
of observations, Figure 3a-e can also be treated as the systematic uncertainty distribution.

In an absolute sense, Fig. 3a mirrors the bias distribution shown in Fig. la. E;,(q,) (Fig. 3a) generally range between
0.4-0.9 g kg'!, where the global mean of 0.63 g kg™! is approximately half the size of the instantaneous random counterpart
shown in Fig. 2a. Maxima are found over the tropical central and western Pacific Ocean as well as the Caribbean and off the
easternmost tip of South America. In the framework of a L H F intercomparison study, Smith et al. (2011) argue that satellite
products have difficulties estimating g, due to persistent stratus clouds, as observed west of Peru over the tropical eastern
Pacific. This conclusion may be the cause for the elevated systematic uncertainties over the tropical eastern Pacific. In contrast,
minima are located along both extratropical belts poleward of 50-60° N/S. Secondly, isolated minima lie over the subtropical
eastern margins of all ocean basins in the vicinity of 15-30° N/S, specifically over the Pacific basin. Interestingly, regions
of comparatively low systematic uncertainties often coincide with regional maxima in random uncertainties (compare Fig.
2a). According to Fig. 1a, biases are smallest for climatological mean g, of 4-5 g kg'! and 13 g kg™!, which fits well to the
mentioned minima in Fig. 3a. Likewise, absolute bias maxima for ¢, of 10 g kg! and 16-17 g kg™! are resolved in both Fig.
la and Fig. 3a.

E im(U) is shown in Fig. 3b. Its global mean equals to 0.81 m s'L. On the one hand, maxima exceeding 1 m s’ are located
along the extratropical storm tracks, specifically over the northern hemisphere. On the other hand, local maxima are found
along broad regions at 30° S and further equatorward over the Central Indian Ocean, off the Arabian Peninsula (both monsoon-
related), and the central Northern Tropical Pacific. With the exception of the Southern Ocean, this is in line with Brunke et al.
(2011), who conclude that reanalysis -, satellite -, and combined data sets tend to overestimate wind speeds with respect to

direct eddy covariance measurements, specifically over strong wind regimes. Monsoon-related characteristic features of Indian
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Ocean L H F variability, which also exhibit an impact on climatological uncertainties, are elucidated in e.g. Mohanty et al.
(1996). Minima in the order of 0.5 m s! are mostly confined to the eastern margins of all ocean basins (Fig. 3b). The maxima
over the northern hemispheric storm track are associated with climatological mean wind speeds of 9—11 m s™!. This range also
reveals largest positive biases in the one-dimensional bias consideration with respect to the in situ source (analogously to Fig.
1, but not shown for U). This also targets the maximum over the central Northern Tropical Pacific and all southern hemispheric
maxima along 40-50° S. Although climatological mean wind speeds maximise over the Southern Ocean, respective systematic
uncertainties rather show a slight poleward decrease. Again, this is in line with results from the one-dimensional dU analysis
(not shown), which indicates that systematic uncertainties reduce for wind speeds above 12 m sl Likewise, absolute bias
minima are associated with low wind regimes in the order of 4—6 m s™'. Climatologically lowest wind speeds of 2—4 m s™! are
for example found along the Pacific coast of Central America (15° N), over the Arabian Sea, and over the Indo-Pacific warm
pool region. HOAPS-3.3 tends to underestimate these wind speeds, as is mirrored in moderate E i, (U) (Fig. 3b).

The climatological uncertainty estimates exceed those found in e.g. scatterometer records in comparison to buoy measure-
ments (e.g. Verhoef et al., 2017). On the one hand, this is linked to the fact that estimates in Fig. 3b should be treated as
upper-boundary uncertainty estimates. On the other hand, scatterometers are specifically designed to derive near-surface wind
speeds at highest accuracy. Passive microwave measurements, in return, allow for a much broader range of applications, which
is a unique feature of HOAPS. An inclusion of scatterometer data into the HOAPS wind speed retrieval was not envisaged,
due to differing overflight times and data coverage, i.e., additional uncertainties of unknown magnitude. Further potential un-
certainty sources, which may contribute to the distribution shown in Fig. 3b, target currents, sea states, and the treatment of air
mass density (i.e., the concept of stress-equivalent wind speeds, e.g. de Kloe et al., 2017).

E1im(gs) covers the range of 0.1-0.6 g kg'! and its global average is given by 0.23 g kg™! (Fig. 3c). The pattern reflects a
latitudinal dependency, which is equivalent to smallest (largest) biases towards the poles ((sub-) tropics). This observation is
not generally valid, as is shown by the comparatively low values over large parts of the Eastern Tropical Pacific and Atlantic.
Distinct maxima are found over the Arabian Sea and along northwestern Australia, the Caribbean, and west of Madagascar.
Narrow bands of elevated systematic uncertainty are also resolved along the WBCs. With the exception of the WBCs, the
regions of maxima are exposed to ¢, in the range of 20-22 g kg™!.

Figure 3d shows the resulting E i, (LH F). It closely resembles that of the global mean L H F pattern itself with values
ranging between roughly 15-50 W m™2 and a global mean of 25.1 W m™2. Relating this pattern to Fig. 3a-c shows a substantial
contribution of E;;,(g,) to the absolute maximum of E;;, (L H F) in the Northern/Southern Tropical Central Pacific, the
Caribbean, and the western tropical South Atlantic (compare Fig. 3a). However, due to the large climatological mean LH F,
respective relative systematic uncertainties of g, are merely in the order of 5-7 %. Correspondingly, imprints of E;,,(U) are
clearly seen along the WBCs, the Central Indian Ocean (10-15 % in a relative sense), and off the Arabian Peninsula (partly
exceeding 15 %) (Fig. 3b). Likewise, the maxima in E;,,(LH F) over the Arabian Sea, along the northwestern coast of
Australia, and close to Madagascar show the footprint of E;;,(qs) (Fig. 3c). However, relative systematic uncertainties in g
generally do not exceed 2.5 %. Locally, isolated E;,,(L H F)) maxima are resolved along 35° S. Specifically over the Agulhas

Current, Santorelli et al. (2011) conclude that different satellite data sets show discrepancies, as they are not able to properly
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handle strong L H F associated with storm systems and potential L H F amplifications due to dry air advection northwards from
the Antarctic (Grodsky et al., 2009). Furthermore, note that the maximum in the Arabian Sea is somewhat special, in as much
as climatological mean L H F in this region are elevated, yet not extraordinarily large. This striking uncertainty maximum may
be linked to occasionally occuring advection of hot, dry air masses from the deserts, which poses problems to the HOAPS-3.3
satellite retrieval.

Figure 3e relates E.i,(LH F) to its natural variability (compare Sect. 4.2). The global average is in the order of 12 %.
Apart from the WBC regimes and the Southern Ocean, largest relative uncertainties are in line with the E i, (L H F) maxima

illustrated in Fig. 3d.
4.5 Fractional contributions to total L H F uncertainty

Simply comparing Fig. 3a-c to Fig. 3d allows for qualitatively assessing which L H F-related parameter contributes most to
E.im(L HF). However, this does not permit a quantitative conclusion. Following a modified version of the *Q-term’ approach
demonstrated in Bourras (2006), E i, (L H F) is decomposed into fractions associated with U, g5, q,, and Cg. Results indicate
that the global mean contribution of E i, (q,) is largest (60 %). This specifically targets the Central Northern and Southern
Tropical Pacific, the Caribbean, the regime off the eastern tip of South America, as well as the Central Indian Ocean. On aver-
age, the contribution by E;,, (U) takes on a value of 25 %. Local hotspots are considerably larger, especially over the Arabian
Sea, along the WBCs, and off Northwestern Australia. The fractional contributions due to both E i, (gs) and E i, (CEg) equal
to 7.5 %, respectively. E.jim(qs) is largest over the Arabian Sea (SST retrieval issues due to dust particles), whereas Ej;,, (CE)
maximises over the Central Indian Ocean and along the North Atlantic WBC. The latter has also been shown by Bourassa et al.
(2013), in as much as accuracy issues in Cg tend to occur over very low and very high wind speed regimes.

All findings are in line with Bourras (2006), Liu and Curry (2006), Grodsky et al. (2009), and Santorelli et al. (2011), who
conclude that the main L H F uncertainty sources are related to the accuracy of g, (and U). Similar conclusions are drawn by
e.g. Tomita and Kubota (2006), who show that the main source of discrepancy between tropical satellite and buoy estimates
may be attributed to the accuracy of g,. By comparison, HOAPS-3.3 uncertainty analyses are beneficial, as the findings of the
above-quoted studies are restricted to either regional analyses, considerably shorter investigation periods, and/or comparatively

thin reference data bases.
4.6 Regional and Seasonal Analysis

Global mean Ej;, and EVS% of all L H F-related HOAPS-3.3 parameters are fairly constant in time throughout the whole cli-
matology. During isolated time periods, however, absolute deviations from the global mean L H F' (q,, U) uncertainty become
as large as 18 % (3 %, 8 %).

Next to seasonal signals, these are footprints of distinct local anomalies. On the one hand, these anomalies seem to originate
from events that temporarily modify the global climate. On the other hand, Figures 2-3 resolve considerable regional variability.

Therefore, the aim is to (1) identify climate features that are manifested in both temporal and spatial uncertainty anomalies and

16



10

15

20

25

30

35

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-176 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 31 July 2017 Techniques
(© Author(s) 2017. CC BY 3.0 License.

Discussions

discuss their origin (descriptive only). At the same time, (2) regional uncertainty differences shall be highlighted by focusing
on climate hotspots (Fig. 4a-c).

Regarding (1): The imprints of moderate to strong El Nifio events during boreal spring 1998 and 2010 are manifested in
LH F-related E.;,, and E7%". During these events, wind speeds over the Pacific upwelling regime are 1.5-2.0 m s™' below
the climatological average. As has been mentioned in Kinzel et al. (2016), this causes an increase in systematic uncertainties
in U. Along with an enhanced E i, (qs), the respective Eim(LH F) over the Pacific upwelling regime reaches 25 W m™

specifically during boreal spring 1998, which is approximately 10 W m™ above the seasonal mean and more than 50 % of

ran

Tan (g,) is up to 0.2 g kg”! below the seasonal mean

climatological mean L H F. As g, are anomalously high with 20 g kg'!, E
(see Fig. 2 in Kinzel et al. (2016) for clarification).

ran
retr

By contrast, global minima in E;,,,(L H F) and E’%"' (L H F) are confined to boreal autumn 1991, taking on a mean value of
20 W m2 (33 W m2), respectively. These estimates are 20 % (11 %) below their climatological averages and are associated with
absolute minima in HOAPS-3.3 L H F. The comparatively small systematic component is induced by E ;i (U) (E¢jim(gs)) of
-8 % (-14 %). The absolute minimum in L H F and its uncertainties during 1991 is a footprint of the Mount Pinatubo eruption,
which caused low-biased SST due to AVHRR aerosol issues and thus unrealistically low near-surface humidity gradients
(Romanova et al., 2010). Amongst others, this shortcoming in the HOAPS-3.3 climatology has already been picked up by
Andersson et al. (2011).

Regarding (2): Figures 4a-c summarize the ranges of seasonal, regime-dependent uncertainty distributions. The color-coded

boxes in Figures 4a-c represent the expected parameter ranges when considering the systematic uncertainty contributions

ran

(Ec1im)- At the same time, the error bars indicate the instantaneous random uncertainty components (E,./.

). Both are shown
separately, as they are independent of each other. With few exceptions, the random uncertainty contributions exceed the sys-
tematic counterpart, as is also mirrored in Figures 2e and 3e.

Figure 4a indicates that the total (i.e., E¢/;,, + Eo/.) uncertainty ranges in g, are largest in (sub-) tropical regimes, concurrent
to high g,. In contrast to the Pacific upwelling region (red) and the Southern Ocean (cyan), the seasonal g, variability over
the Indian monsoon regime (green), the North Atlantic basin (dark blue), and specifically the North Atlantic western boundary
current (brown) is striking. This also finds expression in differences in absolute uncertainties of up to 0.6 g kg™! between
January and July. Largest uncertainties are in the order of +2.40 g kg'! and are confined to the Indian summer monsoon
season, whereas smallest uncertainties around 1 g kg! occur over the Southern Ocean.

Climatological regional wind speeds range between 4.5-11 m s! (Fig. 4b). As for ¢, the seasonality is most pronounced
over the Indian monsoon region, WBC, and the North Atlantic. Largest total uncertainties exceeding £2 m s throughout the
year are observed over the Southern Ocean, which is primarily due to large E}{.(U) (compare Fig. 2b). The Indian monsoon
region is somewhat special, in as much as summertime total uncertainties are largest on a global scale, while wintertime ranges
are almost 50 % lower.

Figure 4c presents regionally dependent L H F' and associated uncertainty ranges. As for Fig. 4a-b, seasonality is most
distinct over the North Atlantic, WBC, and the Indian monsoon region. Largest E (L H F) exceeding 35 W m? are

confined to the WBC regime (specifically during winter) and the monsoon region (climatological average, compare also Fig.
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3d). Total uncertainty ranges maximise along the WBC, where £65-95 W m™ are to be expected, which is 2—3 times larger
compared to the ranges observed along the Pacific upwelling regime. Grodsky et al. (2009), for example, recall that the Gulf
Stream region is challenging due to strong surface currents and SS7T gradients as well as intraseasonal dependencies of how the
stratified atmospheric boundary layer amplifies air-sea interactions. This reasoning may also apply to the Agulhas and Kuroshio
region. The wintertime WBC uncertainty maximum is particularly caused by vast E//. (L H F') of up to 260 W m2 (see also

signal in Fig. 2d). By contrast, regional E ;,, (L H F') become largest in the Indian monsoon region, where their climatological

average is in the order of 40 W m™ (compare also Fig. 3d).
4.7 Uncertainty Application: Trends in HOAPS-3.3 LHF

Figure 5 shows the HOAPS-3.3 global monthly mean LH F (thin black line) between 1988-2012 (70° S-70° N, cosine-
weighted average). The global minimum below 80 W m™ during boreal summer 1991 is linked to the Mount Pinatubo eruption.
Overall maxima in the order of 110 W m2 occur during 2008 and 2009.

The bold black line in Fig. 5 shows the annual running mean climatology of HOAPS-3.3 L H F. On average, it increases by
roughly 4.5 W m™2 (4.7%) per decade (dark red line). If uncertainty ranges were discarded, this trend would be considered as
significant at the 95 % level (p<0.00001, based on a two-tailed t-test). The addressed uncertainty estimates are illustrated as
grey shadings and represent -1 standard deviation of the 12-month running mean climatological uncertainty (global average).
They take on a mean value of + 17 W m2.

A Bayesian approach to linear regression is applied including L H F uncertainty estimates following Kelly (2007), which
yields a large range of linear trends (light red lines). Although the majority has a positive slope, some even indicate a climato-
logical decrease in L H F'. In light of the illustrated uncertainty range, the mean upward trend in HOAPS-3.3 L H F (dark red
line) should therefore be treated with caution, as the magnitude of linear increase lies well within the grey shaded area.

The overall increase in L H F has been elucidated in several studies concerning various L H F' data sets. Amongst others, it
was already detected by Liu and Curry (2006) for HOAPS2 (Fennig et al., 2006), GSSTF2 (Chou et al., 2004), and reanal-
ysis data (NCEP-R2, ERA-40; Kanamitsu et al., 2002; Uppala et al., 2005) between 1989-2000, specifically over the (sub-)
tropics. The authors attribute it to increases in both g5 and U, whereas the latter may be linked to stronger Hadley and Walker
Circulations (Cess and Udelhofen, 2003). Likewise, Gao et al. (2013) attribute largest contributions to observed positive trends
in GSSTF2c LHF to g5 and U. Similar conclusions are drawn by Rahul and Gnanaseelan (2013) for the Indian Ocean, al-
though local L H F decreases in the Objectively Analyzed Air-Sea Heat Fluxes (OAFlux, Yu and Weller (2007)) are in line with
findings from a model study by Held and Soden (2006). Yu and Weller (2007) present results from an OAFlux analysis and
highlight the concurrent rapid warming of global SST (e.g. Levitus et al., 2005) and associated increasing ¢, especially over
the North Atlantic. Concurrently, g, decrease over the eastern Pacific and high southern latitudes, which adds to an increase in
L HF. Mostly, the impact of increasing SST outperforms the positive trend in g,, that is Aq generally becomes larger. The au-
thors also point out that trends in near-surface wind speeds are predominantly positive, which is in line with larger L H F. The
global positive L H F trend in the OAFlux product is strongest during the 1990s and is specifically evident along the WBCs,

the Indo-Pacific warm pool region, and the Tropical Indian Ocean. The global mean increase of 9 W m between 1981 and
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2002 is in the order of 10 %, which is in line with the findings illustrated in Fig. 5, yet one order of magnitude larger compared
to the model study of Pierce et al. (2006). Santorelli et al. (2011) confirm this global mean L H F increase in OAFlux and draw
same conclusions for [IFREMER L H F (Bentamy et al., 2008), specifically for the North Atlantic. The increase in HOAPS-3
LHF is also seen over the Southern Ocean, as has been investigated by Yu et al. (2011) due to increases in both U and Aq.
Locally, these increases between 1988-2000 are in the order of 30 W m2.

Figure 5 also shows that recent global means decrease again. Time series analyses for single satellite instruments suggest that
this is a physical signal (i.e., associated with either multi-annual variability or a climate signal), rather than being associated
with intercalibration issues among SSM/I and SSMIS instruments. However, its decrease may be attributed to the slight negative
SST bias from 2011 onwards. This bias is caused by anomalously high NOAA-19 sensor noises, which themselves may be
traced back to erroneous flag assignments during cloud detection. This is thought to cause up to 5-10 % reduction in LH F'.
Closer investigations that involve other LH F climatologies exceed the scope of this study, but are needed to interpret this
gradual decay.

First intercomparisons of HOAPS-3.3 L H F to in situ and further satellite climatologies have been carried out, where pre-
liminary results indicate that nearly all compared data sets lie within the uncertainty range presented in Fig. 5 (not shown).
A more detailed intercomparison study is envisaged; it will benefit from uncertainty estimates available in NOCSv2.0 and
allow for concluding whether global mean deviations among the data sets lie within or outside of the HOAPS-3.3 prescribed

uncertainty range.

5 Conclusions and Outlook

By means of multi-dimensional bias and MTC analysis, a universal approach for characterizing systematic, random retrieval,
and sampling uncertainties inherent to HOAPS-3.3 L H F-related parameters has been presented. HOAPS-3.3 can therefore
be considered as the first L H F satellite-only climatology including instantaneous and gridded uncertainty estimates. It has
been shown that maxima of systematic uncertainties (E;,,) reach up 50 W m2, specifically over the large regions of the

subtropical oceans (mainly g,-induced) and along the western boundary currents (mainly U-induced). Instantaneous random

ran

o) maximise along 20-30° N/S with values up to 60 W m~2, clearly showing the footprint of random

retrieval uncertainties (£
uncertainties of g,. From a climatological perspective, all random retrieval uncertainty components contribute to the total un-
certainty by merely 1-2 % on a monthly basis (and even less for longer periods), which also accounts for respective sampling
uncertainties. Considerable regional and seasonal variability of L H F uncertainty ranges have been resolved from an instan-
taneous point of view, with maxima over the Gulf Stream and Indian monsoon region during boreal winter. Climate events,
such as strong El Nifio signals and the Mount Pinatubo eruption, are well manifested in both systematic and random LH F
uncertainties, even on a global scale. In light of the available uncertainty estimates, it has been shown that the positive trend in
global mean L H F during the last 25 years lies within the derived uncertainty boundaries.

A new version of HOAPS-3.3, that is HOAPS-4.0, will be released in mid 2017. Major changes compared to HOAPS-3.3

include a temporal extension up to 2014, a new SST product (Version 2 of the NOAA Optimum Interpolation SST (OISST)
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product, Reynolds et al. (2007)), and the implementation of a 1D-Var retrieval for several geophysical parameters. Preliminary
results suggest that the new U estimates have improved compared to HOAPS-3.3 in terms of bias and RMSD behaviour
relative to in situ ground reference data. In consequence, estimates of L H F and E will be updated, along with L H F-related
uncertainty estimates.

Results of the Q-term analysis presented in Sect. 4.5 and other studies suggest that more effort is necessary to improve the
q. retrieval. This would ultimately reduce the overall L H F uncertainty, which, according to e.g. Bourras (2006), ought to be
below 10 W m™2 for a quantitative use over the global oceans. In the framework of the HOAPS-4.0 release, this value has also
been declared as the target requirement for the global mean L H F. An increase in the reliability of HOAPS-3.3 L H F-related
parameters could for example be achieved by referring to a new ground truth reference. Freeman et al. (2016), for example,
recently presented a new version of ICOADS (release 3.0, up to 2014), highlighting its improvements compared to earlier
versions, which target topics such as data quality, data traceability, and data base extension. Apart from new in sifu reference
data, the effect of approximations in bulk flux parameterizations should also be picked up, as has been done in detail in Brodeau
et al. (2017). Amongst others, this concerns implications of sensor height corrections, algorithm choices, the g reduction due
to the salinity effect, cool skin/ warm layer effects, and the assumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of HOAPS-3.2 is not closed. This also accounts for HOAPS-3.3, with
a climatological mean value of 0.45 mm d! (1988-2012, 70° S-70° N). Long-term run-off estimates are summarized and
published by the Global Runoff Data Center (GRDC), adding up to a mean value of 0.34 mm d! (Wilkinson et al., 2014).
According to Andersson et al. (2011), the uncertainty of these run-off estimates is in the order of 10-20 %. Comparing these
values to the HOAPS-3.3 global freshwater flux leaves an imbalance of approximately 0.10 mm d-!, which is 0.30 mm d'!
below the HOAPS-3.2 estimate and can be evaluated as an improvement towards closing the global freshwater flux imbalance.
As Eim(E) is in the order of & 0.6 mm d”!, the imbalance clearly lies in the range of freshwater flux uncertainty.

Recall, however, that uncertainty estimates of HOAPS-3.3 precipitation have not been accounted for in this quantitative
estimation. Generally, the availability of remotely sensed precipitation uncertainty estimates is complicated by sparse reference
data and its intermittency. Tian and Peters-Lidard (2010), for example, have taken on the challenge of creating global maps of
uncertainties in satellite-based (i.e., six TRMM-era data sets) precipitation measurements. In conclusion, overall uncertainties
range between 40-60 % over the tropical oceans, whereas uncertainties may exceed 100 % over the higher-latitudinal regimes
poleward of 40° N/S. A recent study by Burdanowitz et al. (2016) presents an automatic phase distinction algorithm for optical
disdrometer data. Together with a continuously growing high-quality in sifu data base of ship-based precipitation measurements
(OceanRAIN, Klepp (2015)), it will serve as a valuable basis for a characterization of HOAPS-3.3 precipitation and hence
freshwater flux uncertainty ranges in the near future. Accuracy assessments of global rainfall estimates can also be achieved
by means of triple collocation analysis, as is demonstrated in Massari et al. (2017).

Future work also aims at investigating trends in water vapour transports (WVT), using HOAPS-3.3 monthly mean freshwater
fluxes. Sohn and Park (2010), for example, demonstrated that trends in WVT can be used to examine circulation changes and
conclude that the large-scale Hadley Circulation has experienced an increase in strength since 1979. Similarly, Durack et al.

(2012) recently highlighted a considerable water cycle intensification during global warming. Available uncertainty estimates
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will allow for quantifying the WVT uncertainty range, the necessity of which has been picked up by e.g. Sohn et al. (2004).

Data availability: HOAPS-3.3 is a prolongation of HOAPS-3.2 and is based on a pre-release of the CM SAF SSM/I and SSMIS
FCDR. It was created in the framework of the DFG FOR 1740 research activity for internal use. The monthly mean HOAPS-3.2
climatology and the respective FCDR are publicly available and may be downloaded free of charge (http://www.cmsaf.eu/EN/
Products/DOI/Doi_node.html). Instantaneous and gridded HOAPS-3.3 data are available upon request from the author.
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs and random uncertainty decomposition
(Sect. 3.2, 3.4). ’stddev’ = standard deviation, *abs’ = absolute, 'rel’ = relative. Apart from the L H F'-related bulk parameters themselves (U,
gs, and qq), global mean ranges of the random retrieval- (E}J/%), random collocation- (E.), and random in situ measurement uncertainty

(Ejys) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the asterisks indicate respective

estimates published in Kent and Berry (2005), which are based on a semivariogram approach.

parameter / stat. measure mean stddev min (abs) ‘ min (rel) ‘ max (abs) | max (rel)
qa [g kgl 8.8 4.4 28 / 193 /
Ef¢tr(a) 1.0 0.3 0.7 6 % 1.8 24 %
Ec(qq) 0.5 0.1 0.4 3% 0.7 18 %
Eins(qa) 0.5[0.9%] | 0.3[0.3%] 0.1 4 % 1.2 7 %
U [ms!] 7.9 3.6 1.8 / 15.4 /
ESn(U) 1.4 0.4 1.0 12 % 2.6 63 %
E.(U) 1.4 0.3 0.8 12 % 2.0 44 %
E;ns(U) 1.8 [2.5%] | 0.2 [0.4%] 1.5 15 % 2.3 111 %
gs [gkg!] 10.2 5.7 4.5 / 243 /
E4 (g5) 0.5 0.2 0.2 2 % 0.9 9 %
E.(gs) 0.5 0.1 0.4 2 % 0.6 14 %
Eins(qs) 0.6 0.5 <0.1 1% 1.5 8 %
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Table 2. Monthly mean HOAPS-3.3 L H F-related sampling uncertainties as a function of simultaneously operating SSM/I instruments. g, =
"hair", U = "wind", g5 = "hsea", LH F ="late", SST = "asst", E = "evap", air temperature = "tair". All magnitudes are negligible compared

to the instantaneous random (E}.4/.) and climatological uncertainties (Ej;,) presented in Sect. 4.2 and 4.4

# of satellites / parameters "hair" [g kg'I] "wind" [m s1] "hsea" [g kg'1] "late" [W m2] "asst" [K] "evap' [mm a1 "tair'"' [K]
0.05 0.14 0.04 2.3 0.04 0.08 0.08
0.03 0.12 0.04 1.9 0.03 0.07 0.05
0.03 0.11 0.05 1.8 0.04 0.06 0.04
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Figure 1. Scatter density plots of g, bias (HOAPS-3.3 minus in situ, g kg'l) as a function of (a) g, ("hair"), (b) U ("wind"), (c) SST ("asst"),
and (d) water vapour path ("wvpa"), based on global double collocations between 2001 and 2008. The black squares and error bars represent
bin-averaged systematic uncertainties (significant at the 95 % level) and their standard deviations, whereby each bin contains 5 % of all
double collocated matchups. Note that the bars include random uncertainty contributions by the satellite retrieval, the collocation procedure,

and the in situ measurement uncertainty. (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).
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Figure 2. Temporal averages (1988-2012) of HOAPS-3.3 instantaneous E|/\. of (a) g ("hair"), (b) U ("wind"), (c) ¢ ("hsea"), and (d)
LHF ("late"). (e) Relative random retrieval uncertainty of HOAPS-3.3 L H F with respect to its natural variability. This variability is de-
fined as the range between the 5th and 95th percentile of instantaneous L H F between 2000-2008. The global averages (text strings) were
derived by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses, random uncertainty

decompositions, and, in case of (d), uncertainty propagation described in Sect. 3.2-3.4.
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climatological uncertainty of HOAPS-3.3 "hair"
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climatological rel. uncertainty of HOAPS-3.3 "late"
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Figure 3. Temporal averages (1988-2012) of HOAPS-3.3 climatological total uncertainties (E ;) of (a) g4 ("hair"), (b) U ("wind"), (c)
gs ("hsea"), and (d) LHF ("late"). (e) Climatological mean relative Ej;,,(L H F) with respect to its natural variability. This variability is
defined as the range between the 5th and 95th percentile of instantaneous L H F' between 2000-2008. The global averages (text strings)

were derived by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses and subsequent

uncertainty propagations described in Sect. 3.2-3.3.

33

[]

30N 60N

(]

60S 308

Atmospheric
Measurement
Techniques

Discussions

climatological uncertainty of HOAPS-3.3 "wind"

30N 60N

60S 308

150W 120W 90W 60W 30W ] 30E 60E 90E 120E 150E
-1
global mean: 0.81 ms

wind_sys [ms™]
(b) 0.0 0.2 0.4 0.6 0.8 1.0 1.2

climatological uncertainty of HOAPS-3.3 "late"

150W 120W 90W 60W 30W [ 30E 60E 90E 120E 150E
-2
global mean: 25.12 W m

late_sys[W m?]

(d) 00 71 142 213 283 354 425




Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-176
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 31 July 2017

(© Author(s) 2017. CC BY 3.0 License.

uncertainty magnitudes [g kg™']

Figure 4. (a) Expected ranges of g, ("hair") as a function of different regions and seasons, while considering both E;;,, and
(orange), North Atlantic (60° W-5° E, 35-65° N, dark blue), North Atlantic Western boundary current (WBC, 60-80° W, 30—40° N, brown),
Southern Ocean (50-60° S, cyan), Pacific upwelling regime (80-100° W, 5° N-5° S, red), and Indian Monsoon region (50-75° E, 15-30°

N, green). Whereas the color—coded boxes show the expected systematic uncertainty, the bars indicate the random uncertainty component.
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(b) As for (a), but for U ("wind"). (c) As for (a), but for L H F ("late").
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Timeseries of monthly mean HOAPS—3.3 LHF and its total uncertainty range
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Figure 5. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS-3.3 LHF (70° S-70° N, cosine-
weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 W m2 per decade (p<0.00001, based on a
two-tailed t-test). The grey shading represents & 1 standard deviation ("stddev") of the annual running mean Ej;,,. The light red regression

lines were iteratively derived following Kelly (2007) by taking & 1 stddev of E;;,, into account.
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